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REVIEW

Epigenetics in blood–brain barrier disruption
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Abstract 

The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which com-
prise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis 
which combine to protect the brain from toxins and maintains brain homeostasis. Blood–brain barrier (BBB) leakage 
is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. 
Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing 
knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great poten-
tial for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we 
summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, 
along with the promising approaches to regain the integrity of BBB.
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Introduction
Long-term gene expression programs during CNS devel-
opment are directed by epigenetic mechanisms such as 
DNA methylation or hydroxymethylation and histone 
modifications [1]. Recent studies have identified addi-
tional epigenetic mechanisms like microRNAs, long 
non-coding RNAs, and histone variants [1, 2]. These epi-
genetic mechanisms are known to be influenced by the 
environment and experience [3].

The vascular network includes arteries and arterioles 
which distribute blood to the tissues, a fine network of 
capillary beds that supply essential nutrients and gases 
inside the tissue, and venules and veins which collect 
deoxygenated blood from tissues. Vascular properties 
differ, depending on the needs of the specific organs 
they vascularize. To meet the unique requirements of 
the CNS, specialized capillaries in the brain exhibits 
unique barrier characteristics which have been termed 

the blood–brain barrier (BBB). The BBB regulates the 
exchange of molecules between the blood and brain, thus 
managing the brain environment for vital functions. The 
CNS vessels are in contact with two immune cell popu-
lations one within the blood and the other in the CNS 
thought to regulate the BBB properties in response to 
an injury or infection. The CNS immune cell population 
includes macrophages and microglial cells [4]. Although 
it is protective, this selective barrier makes an obstacle 
for CNS drug delivery and significant research efforts 
have been made to create methods to open this barrier 
for drug delivery. Aging and conditions, such as hyper-
tension and cerebrovascular ischemia, can aggravate the 
BBB, thereby changing the BBB components [5, 6], and 
can contribute to BBB disruption that predisposes the 
brain to neurological disease including Alzheimer’s dis-
ease [7, 8]. Further, BBB disruption is a serious concern 
in many neurological diseases such as stroke and TBI 
[9–11]. This review covers the various ways in which epi-
genetic dysregulations contribute to BBB disruption and 
the epigenetic programs that are modified due to BBB 
disruption.
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Epigenetic pathways of gene regulation
Epigenetic modifications are chemical modifications 
occurring in chromatin, DNA, or transcribed RNA that 
can influence gene expression or activity without chang-
ing the DNA sequence [12, 13]. Conventionally, these 
modifications affect histone proteins, DNA, and/or chro-
matin remodeling, but also the non-coding RNAs that 
can regulate the gene expression post-transcriptionally 
in response to various environmental cues belong to this 
group [14, 15]. Epigenetic modifications are heritable in 
nature, stage, and tissue-specific, and involved in global 
gene silencing to support the normal developmental 
processes.

DNA methylation
DNA, the basic unit of heredity is epigenetically modified 
by methylation. DNA methylation regulates the chroma-
tin state and the accessibility of DNA to the transcription 
machinery. DNA methylation is carried out by a group 
of enzymes called DNA methyltransferases (DNMTs). 
DNMTs catalyze the covalent transfer of a methyl group 
from S-adenosyl methionine to the cytosine residue pre-
sent in the CpG dinucleotides [16, 17]. DNMTs can be 
de novo methylase or maintenance methylase. De novo 
methylases are responsible for establishing the early 
methylation pattern during germ cell and embryo devel-
opment [18]. De novo methylation is catalyzed by the 
redundant activities of DNMT3a and DNMT3b. Parallel 
to their redundant activity, each of these methyltrans-
ferases has unique targets. DNMT3a is required for the 
gene body methylation at Polycomb group (PcG) target 
developmental genes. DNMT3b has higher DNA meth-
ylation activity and hence a dominant role in the de novo 
methylation of X-chromosomes [19, 20]. Both DNMT3a 
and 3b function in conjunction with a third methyltrans-
ferase, DNMT3L. Although DNMT3L lacks methyltrans-
ferase activity, it acts as a cofactor regulating the activity 
of DNMT3a and b [21]. Maintenace methylase, DNMT1, 
maintains the methylation pattern set by the other two 
methyltransferases. DNMT1 maintains the methylation 
pattern through mitosis. After DNA replication, DNMT1 
binds to the hemimethylated CpG sites and methyl-
ates the newly synthesized strand. Specific recruitment 
of DNMT1 to the hemimethylated sites is mediated 
through UHRF1, an E3 ubiquitin ligase [22]. Vertebrates 
have another DNMT, DNMT2, that shares high homol-
ogy with other DNMTs. DNMT2 has a very poor/null 
methyltransferase activity on DNA templates. However, 
DNMT2 catalyzes tRNA methylation efficiently [23]. 
Methylation in the gene promoter represses transcrip-
tion by 1) inhibiting the binding of different transcrip-
tion factors (TFs) and/or RNA PolII to DNA, and 2) 
recruiting methyl binding proteins (MBPs), which bind to 

repressors and histone deacetylases [16, 24]. On the con-
trary, removal of the methyl group occurs passively dur-
ing DNA replication, when the newly synthesized strand 
fails to add a methyl group [25]. Demethylation also 
occurs in an enzyme-mediated process. The methylated 
base is converted to a modified nucleotide by oxidation 
or deamination reaction catalyzed by ten-eleven translo-
cations (TETs) and activation-induced deaminase (AID), 
respectively. The modified nucleotide is then recycled to 
generate cytosine by the base excision repair (BER) path-
way [26].

Histone modifications
Histone proteins form the framework upon which the 
DNA is bound. Two units each of H2A, H2B, H3, and H4 
histones associate to form a core histone octamer. The 
octamer is bound by 147 bases of DNA to form a nucleo-
some, the fundamental unit of chromatin compaction. 
Nucleosomes remain connected in a “beads-on-a-string” 
pattern by linker histone (H1) and associated DNA, 
allowing easy access for the transcriptional machin-
ery and higher gene activity. Such open regions in the 
chromatin are referred to as euchromatin. Heterochro-
matin refers to the organization of nucleosomes into 
tight bundles, reducing the access of the transcriptional 
machinery. Histone tails extending from the nucleosome 
surface, as well as the ones, present within the body of 
the octamer, serve as the sites for chemical modifica-
tion. Additionally, histones present in the octamer core 
can be substituted by a variant. This opens up associ-
ated DNA causing their activation [27, 28]. Modifica-
tion of histones through chemical processes can be done 
through post-translational addition or removal of methyl, 
acetyl, sumoyl, and phosphate. The modifications also 
include ubiquitination, ADP-ribosylation, deamination, 
and proline isomerization [29, 30]. The addition of any 
of these groups alters the charge associated with the his-
tone molecule and hence its interaction with the nega-
tively charged DNA. Thus, these modifications change 
the accessibility of TFs and cofactors to the associated 
DNA [31, 32]. The addition/removal of acetyl or methyl 
groups is the most common histone modification and is 
discussed below.

Acetylation and deacetylation of histones
The addition of an acetyl group to the histone neutral-
izes the positive charge on the histones and reduces their 
attraction to the DNA molecules. This makes the DNA 
more accessible to the binding of TFs and other cofactor 
molecules, thereby positively affecting gene expression. 
Acetyl groups are added to the lysine residues present 
in the histone proteins. Acetylation is catalyzed by an 
enzyme called histone acetyltransferases (HATs/KATs) 
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and is divided into two categories. Type a HATs are in 
the nucleus and they carry out the acetylation of nucleo-
somal histones and promote their transcription. Type b 
HATs are involved in the acetylation of newly synthesized 
histone molecules, before their incorporation into the 
nucleosome complex. They are distributed in the cyto-
plasm. Within the nucleus, histone acetylation can be 
reversed by HDACs. They remove the acetyl groups from 
the histone proteins, thus increasing the attraction of his-
tone with the DNA molecule. This leads to the conden-
sation of chromatin and hence gene repression. Eighteen 
HDACs identified in mammals have been classified 
into four different groups. Class I HDAC consists of the 
nuclear-localized HDAC1, 2, 3, and 8. HDACs shuttling 
between nucleus and cytoplasm constitute class II and 
include 4, 5, 6, 7, 9, and 10. Class III HDAC comprises 
NAD+ dependent proteins called sirtuins and class IV 
comprises HDAC11.

Methylation and demethylation of histones
Histone methylation within the nucleus is controlled by 
histone methyltransferases and histone demethylases. 
Methyl groups from S-adenosyl methionine are trans-
ferred to the lysine or arginine residue present in H3 
and H4 histone by histone methyltransferases. Depend-
ing on the residue getting methylated and the degree of 
methylation, their effect on gene expression can vary. The 
important sites of methyl group addition to a lysine on 
H3 are 4, 9, 27, and 36, and on H4 is 20. Generally, H3 
methylation on the 4th (K4) or 36th (K36) lysine resi-
due activates transcription, whereas K9 and K27 meth-
ylation repress genes. H3K4 me1 is often associated 
with enhancer regions [25, 33]. Another histone meth-
yltransferase called disruptor of telomeric silencing-like 
(DOT1L) catalyzes H3K79 methylation [34]. Histone 
methylation is reversed by demethylases. Histone dem-
ethylase, Jumonji domain-containing protein 3 (Jmjd3) 
antagonizes the repression caused by H3K27me3 meth-
ylation during hypoxic conditions [35]. Jmjd6 is a histone 
arginine demethylase catalyzing H3R2 and H4R3 dem-
ethylation (Flt1; [36]). H3K4 di/trimethylation is reversed 
by jumonji AT-rich interactive domain 1B (JARID1B) and 
Lysine Demethylase 5B (KDM5B). However, H3K4me1 
and H3K4me2 are removed by another demethylase, 
lysine-specific demethylase 1 (LSD1) [37]. Plant homeo-
domain finger protein 8 (PHF8) is a histone demethylase 
catalyzing the removal of methyl groups from histone 3 
lysine 9 (H3K9) and H4K20 [38].

Non‑coding RNAs
Non-coding RNAs (ncRNAs) are a group of untrans-
lated RNA molecules with regulatory functions. Based 
on the length of the RNA, ncRNAs are classified into 

small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs). 
Small RNAs usually range in their size from 18 to 35 
nucleotides, whereas the lnc RNAs are more than 200 
nucleotides in length. SncRNAs show high functional 
variations and include transfer RNA (tRNA), ribosomal 
RNA (rRNA), small nuclear RNA (snRNA), small nucle-
olar RNA (snoRNA), Piwi-interacting RNA (piRNA). 
LncRNAs include intergenic ncRNAs, long intronic 
RNAs, telomeric ncRNA, pseudogene transcripts, 
enhancer RNA, and promoter-associated long RNA [39]. 
However, in the forthcoming sections, we will limit our-
selves to ncRNAs involved in post-transcriptional regula-
tion, directly by competing with functional RNAs. These 
include miRNAs and lncRNAs, specifically those binding 
to the target RNA and inhibiting translation. MiRNAs are 
single-stranded RNAs typically ranging in length from 
20 to 24 nucleotides. They are located in the cytoplasm 
and stimulate the degradation of target RNA molecules 
by a pathway involving RNA induced silencing complex 
(RISC). The expression and function of miRNAs are 
closely associated with other epigenetic modifiers [39, 
40]. LncRNAs show a greater variation in their sequence. 
They can also function as competitors to endogenous 
RNAs. LncRNA expressed from pseudogenes function 
as ‘antagomirs’ or ‘miR sponges’ by sequestering miRNAs 
[39, 41].

Epigenetics of the blood–brain barrier
BBB formation
During embryonic development, the mesoderm differen-
tiates into angioblast and develops into a primitive blood 
vessel, this process is defined as vasculogenesis. Follow-
ing this, new capillaries grow from this existing blood 
vessel by the process defined as angiogenesis. In mice, 
blood vessels invade the brain at embryonic day 9.5. It 
was reported that BBB genes including TJ proteins occlu-
din and claudin-5 are expressed in the brain ECs at the 
initial stages of angiogenesis [42, 43]. However, a func-
tional intact BBB is reported to be formed at E−15.5 in 
mice [44]. In humans, angiogenesis does not begin until 
fetal week 8, and the BBB is reported to be functional 
at an age of 4 months [45]. A detailed review of existing 
knowledge in the formation of BBB is available in [46, 
47]. The details on vascular development in the brain and 
patterning are beyond the scope of this review, but it is 
relevant to the discussion in the review to provide a clear 
distinction between the neurovascular unit and BBB.

Neurovascular unit
As the blood vessel invades the brain, the ECs and 
perivascular cells, called pericytes, come to close contact 
with both neuronal and glial cells to form a neurovascu-
lar unit (NVU, Fig. 1) [48, 49]. The vascular components 
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(ECs, pericytes, and vascular smooth muscle cells) and 
neuroglial components (neurons, oligodendrocytes, 
microglia, astrocytes, and astrocyte-derived basement 
membrane) of the NVU interact dynamically and com-
municate to regulate proper angiogenesis, BBB forma-
tion, and maintenance in the brain and the blood-retinal 
barrier (BRB) in the eye. This unique communication 
program likely provides important cues to modify the 
epigenetic programs in BBB cell types and thus support 
the formation and maintenance of BBB, until now these 
interactions have not been studied in any detail.

Structural Components of the BBB
The specialized multicellular BBB structure contributes 
to the barrier properties including limiting or regulating 
the transport of molecules (influx and efflux), protection 
from toxic materials and pathogens (Fig. 1). CNS blood 
capillaries formed by ECs are the primary functional 
component of the BBB. Perivascular cells pericytes and 
ECs share a common basement membrane with attach-
ment points to extracellular matrix components medi-
ated by integrins and less ubiquitous cell-ECM receptors 
such as dystroglycan. The BBB is composed of a base-
ment membrane (comprised of e.g. type IV collagen, 
laminin, and fibronectin), surrounded by astrocyte end-
feet ensheathing the vessels and pericytes (PCs) [50]. 
In CNS vessels, ECs are held together with the help of 
strong tight junctions (TJs), which limit the paracellular 
flux of solutes, and are characterized by specific trans-
porters, which,deliver molecules across the barrier and 
securely controls the brain homeostasis. The structural 
components of the BBB are comprehensively reviewed in 
[51–53]. Emerging experimental techniques in genomics 
and proteomics are now providing a larger picture of the 
molecular components of the BBB. Current understand-
ing of the unique transcriptome and proteins in CNS ECs 

was obtained mainly by comparing isolated CNS ECs 
with peripheral and other brain cells [42, 43, 54–57].

Tight junctions
Highly expressed TJ proteins are unique to CNS endothe-
lial cells. It is the TJs between adjacent endothelial cells 
that confer the low paracellular permeability and high 
electrical resistance of the barrier, making it able to func-
tion 50–100 times tighter than peripheral microvessels 
[58–60]. TJs consist of complexes of claudins, occludins, 
and other transmembrane proteins scaffolded to the 
actin cytoskeleton by zona occludens (ZO) proteins [59, 
61]. Together, these elements function to maintain home-
ostasis in the changing milieu of the CNS.

DNA methylation
Currently, no data exist to explain the DNA methylation 
events that directly regulate the expression of TJ proteins. 
This study is only an example of indirect regulation of 
TJ localization/degradation via TIMP2 and MMPs, and 
no direct DNA-methylation regulation for TJ proteins 
has been reported until now. Following middle cerebral 
artery occlusion (MCAO) in mice, a global DNA meth-
ylation event was reported as an increase in global DNA 
methylation in the mouse brain. The study shows that 
these global methylation changes after MCAO increased 
the methylation in the promoter of tissue inhibitors of 
metalloproteinase 2 (TIMP2). TIMP2 functions to inhibit 
matrix metalloproteinase (MMPs) which are a group of 
enzymes involved in protein degradation of the extra-
cellular matrix and the non-covalent binding of TIMPs 
will inhibit MMP activity. MMP-mediated disruption 
of TJ proteins is well documented [62, 63]. Increased 
MMP activity/secretion can affect BBB permeability, 
with MMP-2 and -9 being associated with BBB break-
down following stroke. Consequently, decreased TIMP2 

Fig. 1  Diagrammatic representation of a neurovascular unit (NVU). NVU consisting of vascular cells, glial cells and neurons are shown in a, and the 
enlarged view of the inset is given in b. Endothelial cells (red), pericytes (blue), and smooth muscle cells (pale green) represent the vascular cells. 
The glia cells are given in dark green (astrocytes), and blue (oligodendrocytes), yellow (microglia) and the neurons in pink color. Tight junctions 
connecting the endothelial cells are also shown in b 



Page 5 of 16Ihezie et al. Fluids Barriers CNS           (2021) 18:17 	

expression/activity can be related to increased MMP-9 
activity and degradation of the basal lamina [64] and 
tight junction components [65] resulting in BBB damage. 
Together, the MCAO-induced hypermethylation of the 
TIMP2 promoter contributes to a decreased activity of 
TIMP2 and an increased MMP activity that contributes 
to TJ protein degradation. Consistent with these findings, 
the pharmacological and genetic inhibition of DNMT 
was effective in attenuating the stroke symptoms [66, 67].

Conversely, a leaky BBB can contribute to changes 
in DNA methylation events leading to gene expres-
sion changes. Using in vitro and in vivo BBB disruption 
models, it was shown that BBB leakage can influence 
the expression of the DNA methyltransferase enzyme 
DNMT3b [68]. The study reported that BBB disruption 
influenced the DNA methylation events via increased 
expression of noncoding RNA miRNA29b. The increased 
miRNA29b affects the expression of DNMT3b and MMP 
expression. Supporting these findings, DNA methyl-
transferase inhibitor treatment (5-Azacytidine) ame-
liorates the BBB damage via reducing the expression of 
miRNA29b [68]

Future studies are required to investigate the role of 
DNA methylation changes in diseases where the BBB is 
compromised. Further studies are also warranted to elu-
cidate how BBB leakage-induced stress contributes to 
DNA methylation events in other cell types of the neuro-
vascular unit.

HDACs and their inhibitors
Histone acetylation and deacetylation play a critical role 
in chromatin remodeling and epigenetics. HDACs have 
been identified as potential therapeutic targets in differ-
ent neurological diseases [69]. The availability of different 
specific HDAC inhibitors has augmented our under-
standing of HDAC functions, mechanism of actions, and 
genomic profile influenced by this mechanism. Several 
compounds that inhibit HDAC activity have now been 
developed and characterized. Clinically HDAC inhibi-
tors are successful in causing cell growth arrest, differen-
tiation and/or apoptosis, and tumor growth restriction. 
Promisingly, the clinical efficacy of HDAC inhibitors 
extends beyond cancer treatments, and they have now 
been explored for their therapeutic potential in all top 10 
leading causes of death in the US [70].

The most notable secondary effect after stroke is BBB 
damage. Recent efforts were made to target the HDACs 
to ameliorate TJ protein degradation. HDAC inhibi-
tors, valproic acid, and sodium butyrate (class I, IIA, 
and III inhibitors) were used to treat an ischemic stroke 
rat model, and these effects on protecting the BBB were 
studied. It was reported that this treatment was benefi-
cial in decreasing the degradation of TJ proteins such as 

Claudin-5 and ZO-1. The associated mechanism was 
through suppression of NF-κB activation and MMP-9 
induction [71, 72]. In another recent study, class IIA 
HDAC inhibitor—TMP269 treatment for mice sub-
jected to cerebral ischemia/reperfusion injury leads to 
an increased expression of the tight-junction proteins, 
ZO-1, Occludin, and Claudin-5 in ECs, and thereby sta-
bilize the BBB [73].

In parallel to this, recent research investigates the epi-
genetic changes after stroke. An increased HDAC expres-
sion was reported after an ischemic stroke. The author 
claims that this can contribute to BBB injury, and inhib-
iting HDAC can protect BBB [71, 74]. Conversely, an 
increased expression of HDAC4 after ischemic stroke 
was reported to protect the BBB break down via elevation 
of TJ proteins like claudin-5, occludin, and ZO-1, and 
through reducing the expression of NADPH oxidase and 
MMP-9 [75]. In an in  vitro ischemic model using oxy-
gen–glucose deprivation (OGD) in CNS endothelial cells 
an upregulation of endothelial HDAC9 expression was 
shown and this was associated with a decreased expres-
sion of TJ proteins, like ZO-1, claudin-5, and occludin. 
Supporting these findings, genetically targeting HDAC9 
pre-OGD re-established the TJ protein expression in 
ECs [74]. Another in vitro study, using cultured primary 
human brain microvascular ECs undergoing OGD and 
reoxygenation, reported increased transendothelial cell 
permeability and downregulation of junctions proteins. 
These changes were correlated with increased HDAC3 
activity and decreased PPARγ activity. Supporting the 
role of HDAC3 in regulating the TJ protein expression, 
treatment with a selective HDAC3 inhibitor RGFP966 
reduced the paracellular permeability and increased the 
expression of TJ protein Claudin-5 via PPARγ receptor 
[76]. The same group also reported an increased HDAC3 
expression in the hippocampus and cortex of diabetic 
mice accompanied by BBB leakage and was rescued via 
HDAC3 inhibitor treatment through miR-200a/Keap1/
Nrf2 signaling pathway [77].

Histone methylation
Another important and prevalent chromatin modifi-
cation that is known to influence TJ protein expres-
sion is a post-translational modification of histones by 
methylation. A recent study showed that the glucocor-
ticoid dexamethasone (glucocorticoids are currently 
used clinically for preventing tumor-associated brain 
edema [78]) can suppress the expression of JMJD3, a 
histone H3K27 demethylase in TNFα treated BBB dis-
ruption model on mouse brain microvascular endothe-
lial cell line (bEnd.3). This happens via the recruitment 
of glucocorticoid receptor α (GRα) and nuclear recep-
tor co-repressor (N-CoR) to the negative glucocorticoid 
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response element in the upstream region of the JMJD3 
gene. Further, the decreased expression of JMJD3 is cor-
related with a decreased activation of MMP-2, MMP-3, 
and MMP-9, and increased expression of claudin-5 and 
occludin [79–81]. Polycomb repressive complex proteins 
catalyze the methylation of H3K27 leading to repressive 
histone modification H3K27me3 in the gene promoter. A 
study to understand the role of vascular endothelial cad-
herins (VEC) in vascular stabilization, showed that VEC 
overexpression increases the expression of the claudin-5 
gene by preventing the binding of PRC2 to the CLDN5 
gene. VEC mediates this by forming a complex with 
Wnt transducer β-catenin and PRC2 subunit EZH2 [82]. 
Caveolin-1 a key protein involved in the BBB [83–85] was 
repressed in Influenza-associated encephalopathy (IAE). 
The repression was mediated by the SET domain bifur-
cated 2 (Setdb2) by methylation of histone H3 lysine 9 
[86].

From the above-discussed studies, it is evident that 
histone modifications have a critical role in controlling 
the expression of TJ proteins. However, more in-depth 
attempts are needed to understand the epigenetic mech-
anisms and signaling pathways that contribute to the for-
mation and maintenance of TJs.

Adherens junctions
The BBB is characterized by the high expression of TJs 
and low expression of adherens junctions (AJs) when 
compared to non-CNS EC barriers [87]. The basic molec-
ular structure of adherens junctions (AJs) resemble TJs. A 
major AJ reported to be present in the CNS ECs is CDH5 
along with a low expression of N- and E-cadherins [88]. 
It is reported that during CNS angiogenesis ECs have a 
relatively high expression of cadherin-10 compared to 
CDH5 [89, 90]. Stable AJs are key to the formation of TJs. 
It was reported that TJ protein CLDN5 expression was 
upregulated by CDH5 by inducing the phosphorylation 
of forkhead box factor FoxO1 through Akt activation and 
by limiting the translocation of β-catenin to the nucleus 
[91]. Furthermore, the same group reported the epige-
netic link for these findings (described in the TJs histone 
methylation section of this review).

Transporters or solute carriers
The barrier to paracellular diffusion contributed by TJs 
potentially isolates the brain from many essential polar 
nutrients such as glucose and amino acids necessary for 
metabolism and therefore the CNS endothelium forming 
the BBB express a large number of specific transporters, 
including solute carriers and ABC (ATP-binding cas-
sette) transporter proteins, for a wide variety of solutes 
and nutrients, mediating flux into and out of the brain 

[92–101]. Classification and roles of BBB transporters 
can be found in [102–104].

Glucose is the primary metabolic fuel for the mamma-
lian brain and a continuous supply is required to main-
tain normal CNS function. The BBB regulates glucose 
transport into the brain via specific glucose transporters. 
A study to understand the prioritized glucose supply into 
the brain during fasting reports that fasting‐induced the 
production of ketone body β‐hydroxybutyrate (β‐OHB) 
which enhances expression of the glucose transporter 
gene GLUT-1 via histone modifications. Brain microvas-
cular endothelial cells treated with β‐OHB upregulated 
the expression of GLUT-1 via inhibiting HDAC2 and 
elevation of acetylation in H3K9 at the critical cis‐regu-
latory region [105]. The multidrug resistance protein 1 
(MDR1, ABCB1, P-glycoprotein) is a major efflux trans-
porter located on the surface of capillary endothelial 
cells that restricts the accumulation of xenobiotics in the 
brain. Immortalized human brain capillary endothelial 
(hCMEC/D3) cells treated with HDAC inhibitors valp-
roic acid (VPA), apicidin, and suberoylanilide hydroxamic 
acid (SAHA) increased the mRNA and protein levels of 
MDR1 by 30–200% via increased acetylation in H3K9/
K14 [106].

Apart from the above few studies, no other research 
was found reporting on the role of epigenetic programs 
in regulating the expression of BBB transporters.

Other cell types in the BBB
Pericytes
The abluminal surface of the CNS vessel shows the high-
est coverage of pericytes that invest and support the 
endothelial layer throughout the vasculature. Cerebral 
vessels have a high pericyte to EC ratio [107, 108] point-
ing to their significant role in the neurovascular unit, 
controlling BBB integrity and function, supporting the 
stability of vessels, contributing to the elasticity of vessels 
regulating the blood flow, and protecting endothelial cells 
from potentially harmful substances [109–111]. Cross-
talk between pericyte and endothelial cells enhances the 
EC TJ formation and decreases transcytosis and leuko-
cyte adhesion molecule expression in the developing BBB 
[43]. Considering the aforementioned functions, dys-
function or apoptosis of blood–brain barrier pericytes is 
a vital factor in the pathogenesis of several diseases that 
are associated with microvascular instability.

HDACs and their inhibitors
An in vitro study was conducted to investigate the effect 
of HDAC inhibitors on pericyte proliferation, cell viabil-
ity, migration, and differentiation. The results showed 
that HDAC inhibitors valproic acid and trichostatin A 
inhibited the proliferation and migration of pericytes 
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with no effect on cell viability. Further, HDAC inhibi-
tor treatment in pericytes increased the transcription of 
angiogenesis-related genes such as angiopoietin-like 4, 
transforming growth factor beta2, and TIMP2 [112]. BBB 
is also reported to be compromised during HIV infec-
tion. An attempt to investigate the role of occludin on 
BBB breakdown after HIV infection and its impact on 
pericytes reports that occludin levels control the meta-
bolic responses of pericytes after HIV infection. HIV 
infection in pericytes reduces the occludin level and this 
is correlated with a decreased expression and activa-
tion of the class III histone deacetylase sirtuin (SIRT)-1 
along with elevated nuclear localization of gene repres-
sor C-terminal-binding protein (CtBP)-1 and NFκB-p65 
activation. Further, this study demonstrates occludin 
as a NADH oxidase and showed that cellular levels of 
NADH inversely correlated with the cellular content of 
occludin that controls the expression and activation of 
SIRT-1 [113]. In another study, overexpression of SIRT3 
was shown to increase the pericyte density and improved 
the pericyte EC coverage in the lungs of LPS treated mice 
[114]. The overexpression of SIRT3 could also be promis-
ing for brain pericytes and to support BBB repair after an 
injury.

Astrocytes
Astrocytes serve as a bridge that connects neuronal 
signaling to the CNS vasculature. Astrocyte structure 
includes specialized processes called astrocyte endfeet 
that extend from the astrocyte cell body and attach to the 
basement membrane that surrounds the endothelial cells 
and pericytes [115–117]. Astrocytes regulate the BBB 
through its synaptic glutamate levels, via scavenging free 
radicals and producing neurotrophic factors to commu-
nicate with other cell types in the BBB [118, 119]. In an 
in-vitro co-culture experiment with ECs cultured alone, 
ECs co-cultured with astrocytes or astrocyte-conditioned 
media enhanced the endothelial cell barrier properties 
including the transporter expression and increased TJ 
formation thus supporting the astrocyte interaction with 
endothelial cells supporting the formation of the BBB 
[120].

DNA methylation
Astrocyte end-feet have orthogonal arrays of intram-
embranous particles (OAPs) consisting of the most 
abundant water channel aquaporin-4 (AQP4) and the 
ATP-sensitive inward rectifier potassium channel Kir4.1 
[121]. It is reported that DNA methylation is an impor-
tant process in the development of astrocytes since 
demethylation of astrocyte-specific genes such as GFAP, 
S100β, and AQP4 in neural stem cells (NSCs) promotes 
the switch from neurogenesis to astrogenesis [122–125]. 

In astrocytes, changes in global DNA methylation pat-
terns have been shown to occur in psychiatric disorders 
[126] and alcohol abuse [127]. However, DNA methyla-
tion events in astrocytes that contribute to BBB forma-
tion or damage are not known.

HDACs and their inhibitors
The GLUT1 transporter has an important role in astro-
cyte metabolism and supporting neuronal energy metab-
olism [128]. It is reported that cerebral astrocyte culture 
incubated with Pan-HDAC inhibitor valproic acid could 
increase histone acetylation at the SLC2A1 promo-
tor thereby facilitating glucose uptake in the astrocytes 
[129]. This is important as maintaining the astrocyte 
metabolism after an injury can ensure BBB maintenance. 
Addressing the expression pattern of HDACs in the cor-
tex and hippocampus of mice after photothrombotic 
infarction showed that HDAC1 was expressed in the 
nuclei and cytoplasm of GFAP(+) astrocytes in the hip-
pocampus. Expression was also observed, to some extent, 
in astrocyte end-feet [130]. In another study, the activity 
of HDAC2 and HDAC8 in neurons and astrocytes was 
reported to be elevated 7 days after ischemia. The study 
also reports that HDAC2 was predominantly localized in 
the nuclei, and HDAC8 was predominantly observed in 
the cytoplasm. Together the above research can be read 
as the increased expression of HDACs have some critical 
role in BBB damage and HDAC inhibitor can potentially 
minimize this effect after ischemic stroke [71, 74, 131].

BBB and non‑coding RNA
MicroRNAs (miR) which cause degradation or trans-
lational repression of mRNA play an important role in 
the development and progression of BBB dysfunction. 
Knowledge of miRNAs function in the BBB came from 
the early work identifying miR-125a-5p and other miR-
NAs in regulating brain endothelial tightness [132]. The 
increasing number of research articles connecting dif-
ferent miRNAs and BBB disruption highlights the sig-
nificance of targeting miRs for BBB repair in various 
neurological conditions including TBI and stroke [133, 
134]. Keeping in mind that small nucleotide-based drugs 
are easy to develop and targeting miR has great success, 
drugs targeting and based on miRs have a pronounced 
potential in treating BBB damage in neurological diseases 
[133].

Table  1 shows different miRs and their mechanism of 
action which are reported to be involved in the BBB dis-
ruption after different pathological conditions including 
stroke. Our impression from the literature is that miRs 
and BBB disruption are studied mostly in stroke condi-
tions. Although miRNAs are inhibitory, depending on 
their target mRNA, an increase or decrease of miRNA 
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expression is relevant. MiRs can directly or indirectly 
cause the degradation of BBB proteins or translational 
repression of BBB mRNA. For example, it is reported 
that miR-132 can directly target MMP-9 and after stroke, 
the reduced miR-132 expression increases MMP-9 activ-
ity which degrades TJ proteins or components of the 
basal lamina. Further TJ proteins like ZO-1, occludin, 
and claudin-5 were reported to be positively regulated 
by miR-126, miR-107, and miR-127 and negatively regu-
lated by miR-98 and miR-150 in different disease models. 
A comprehensive, systematic review of miRNA regula-
tion of TJ proteins has been conducted [135], and more 
miRNA have been found involved in TJ protein regula-
tion summarized in Table 1.

In an effort to investigate the differences in miRNAs 
expression in rat cortical pericyte during hypoxic stress 
showed differential regulation of miRNAs with 27 miR-
NAs upregulated and 31 miRNAs downregulated. These 
differentially regulated miRNAs are capable of target-
ing important signaling factors such as HIF-1α (miR-
322 [136] increased and miR-199a [137] decreased in 
pericytes after hypoxic stress), TGF-β (miR-376b-3p 
[138] increased miR-140[139], miR-145 [140] decreased 
in pericytes after hypoxic stress) and VEGF (miR-
126a [141] increased, and miR-297[142], miR-16[143], 
miR-17-5p[144] decreased in pericytes after hypoxic 
stress). Let-7 miRNA expression in pericytes is reported 
as involved in pericyte differentiation in response to 
hypoxic stress [145]. As an example of endothelial-per-
icyte cross talk, an in-vitro study reports that pericytes 
could uptake miR-503 originated from endothelial cells 
exposed to high glucose (hyperglycemia) [146, 147]. 
Under diabetic-induced microvascular dysfunction, inhi-
bition of lncRNA-myocardial infarction-associated tran-
script (MIAT) or lncRNA-metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1) is shown to 
reduce the pericyte loss [148].

Astrocytes are known to express several miRNAs and 
these miRNAs can affect various functions of astrocytes 
[149–154]. Astrocytes-derived factors such as vascular 
endothelial growth factors, matrix metalloproteinases, 
nitric oxide, and endothelin-1 can affect the vascular tone 
and BBB permeability [155–159]. Considering this astro-
cytic miRNAs are a potential therapeutic target for BBB 
damage however this axis is yet to be explored.

Epigenetic strategies for the treatment of blood–
brain barrier damage
Currently, there are no treatment modalities available to 
directly treat BBB dysfunction. The most common drugs 
to treat BBB dysfunction are glucocorticoids which help 
to stabilize TJ proteins [179–182]. In multiple sclerosis, 
interferon-beta treatment is one of the most promising 

immunomodulatory for reducing inflammatory dam-
age. Few pre-clinical and clinical evidence support that 
interferon-beta could also be effective in treating BBB 
[183–185]. However, these drugs are not specific to 
the BBB, are mainly used as anti-inflammation, affect 
numerous physiologic processes, and increase the risk 
of complications, including infection and hyperglycemia 
[186]. The gene expression profile of humans and mice 
that contributes to the BBB function is now available 
[187–192]. This dataset was acquired by comparing the 
brain EC transcriptome to peripheral ECs [187, 193]. A 
deep understanding of the epigenetic mechanisms that 
regulate the transcription of BBB genes in brain ECs 
and other BBB cell types is warranted so that epigenetic 
drugs can be repurposed or developed to manipulate the 
BBB gene expression to treat BBB dysfunction in vari-
ous neurological diseases. Epigenetic markings of DNA 
and histones are introduced and removed by enzymes, 
and they are therefore potentially reversible, paving the 
way for potential therapeutic targets. Promisingly small 
compounds that target epigenetic mechanisms includ-
ing HDAC inhibitors have been FDA approved for the 
treatment of certain cancers [194]. Although many epi-
genetic drugs are in clinical trials for cancer treatments 
(Table 2), there is still room for improvement, as they are 
relatively unstable, can have toxic side effects, and are not 
available for oral administration. Table  2 mentions the 
available compounds that target epigenetic mechanisms. 
Information on epigenetic drugs’ clinical availability and 
mechanism of action can be found in [194–198]. Promis-
ingly, apart from its use as cancer drugs, clinically HDAC 
inhibitors are now used in psychiatry and neurology as 
mood stabilizers and anti-epileptics [199].

Emerging questions related to the prognostic and diag-
nostic value of epigenetic modifications in the BBB genes 
for predicting neurodegenerative processes and cogni-
tive decline now exist. To learn the gene expression pro-
grams in CNS ECs that contribute to BBB dysfunction, 
the gene expression profile of brain ECs from differ-
ent mice disease models which shows BBB dysfunction 
such as stroke, TBI, multiple sclerosis were compared. 
Interestingly, though the trigger for BBB dysfunction in 
each disease differs, a similar change in EC gene expres-
sion pattern contributes to BBB dysfunction [188]. This 
is a very significant finding as we can correlate the gene 
expression changes to changes in the epigenetic marks on 
those BBB genes. Furthermore, by manipulating the epi-
genetic regulation of those genes, it is possible to manip-
ulate the expression of BBB genes to repair the BBB 
damage. Numerous studies have shown that AD brain 
endothelium expresses low levels of GLUT1, a BBB-
specific glucose transporter, which then leads to reduced 
transport of glucose into the brain [200]. Identifying 



Page 11 of 16Ihezie et al. Fluids Barriers CNS           (2021) 18:17 	

these epigenetic changes and reversing them may offer 
a promising therapeutic opportunity to target BBB dys-
function in AD.

For human BBB studies currently, MRI imaging is the 
most commonly used technique. Limited availability 
of human brain vessels for BBB studies makes it almost 
impossible to understand the BBB rupture mechanism 
in humans. Advances in stem cell technology now allow 
developing in  vitro human BBB models from patients 
with different neurodegenerative disorders carrying 
genetic mutations [201, 202]. These human studies will 
enhance the knowledge of epigenetic variations in several 
neurological diseases that leads to BBB damage by com-
paring it to in vitro BBB models from healthy or isogenic 
controls.

Conclusion and future direction
BBB leakage is a major factor that determines disease 
progression, outcome, and therapeutic response. Man-
agement and prevention of BBB leakage pose a nota-
ble challenge to the medical community. Currently, no 
readily available clinical agent exists that can effectively 
prevent leakage or repair BBB. Novel therapeutic strat-
egies that can meet this challenge might emerge from 
understanding the epigenetics of BBB development and 
damage. From our above review of literature, it is clear 
that most mechanistic insights on epigenetics and BBB 
breakdown have been gained from animal models of 

stroke. We have limited knowledge about the epigenetic 
mechanisms underlying breakdown in neurodegenera-
tive disorders such as Alzheimer’s disease and multiple 
sclerosis. More research is warranted to investigate the 
epigenetic changes in BBB genes of CNS ECs, pericytes, 
astrocytes, and neurons after a BBB breakdown. We 
hope the development of advanced sequencing tech-
niques, availability of ChiP antibodies and advanced 
methods to purify the brain cell types will allow com-
prehensive research in this area. Furthermore, there is 
a huge lack of human data to support the preclinical 
findings. Considering species differences affecting BBB 
permeability, it is also very relevant to investigate that 
the existing animal data are translatable to the human 
situation.
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Table 2  Details of the drug targeting epigenetic modifiers in endothelial cells

Name of the drug Epigenetic enzyme altered by the drug Status of the clinical study/disease or condition

Trichostatin A Inhibits class I and II HDAC enzymes Clinical trial-completed (NCT03838926)/Relapsed or Refractory Hemato-
logic Malignancies

Valproic acid/VPA Inhibits class I and class IIa HDACs Clinical trial-completed (NCT01233609)/ Retinitis Pigmentosa

Sodium butyrate/NaB Inhibits class I and class IIa HDACs Clinical trial-completed NCT00800930/ Shigellosis

Suberoylanilide hydroxamic acid/
SAHA/Vorinostat

Inhibits class I and II HDACs Clinical trial-completed (NCT00106626)/ Advanced Cancer

3-Deazaneplanocin-A /DZNep Inhibits EZH2 methyltransferase –

Methylthioadenosine/MTA Inhibits H3K4 methylase Clinical trial-completed (NCT03083015)/ Necrotic Pulp

Morpholino Inhibits histone acetyltransferase 7/KAT7 Clinical trial-completed (NCT03375255)/ Muscular Dystrophy, Duchenne

Resveratrol/RV Activates sirtuin1/Sirt1 Clinical trial-completed (NCT01010009)/ Cognitive and Cerebral Blood 
Flow Effects of Resveratrol

Panobinostat/LBH589 Inhibits ClssI, II, and IV HDACs Clinical trial-completed (NCT00840346)/ Acute Myeloblastic Leukaemia

Entinostat/SNDX-275/MS 27–275 Inhibits HDAC1/3 Clinical trial- completed (NCT02897778)/Cardiac Safety Study With 
Advanced Solid Tumors

Mocetinostat Inhibits HDAC1 and HDAC2 Clinical trial-completed (NCT02303262)/ Metastatic Leiomyosarcoma

Lithium Inhibits GSK3b Clinical trial-completed (NCT01259388)/ Progressive Multiple Sclerosis

5-Aza-2′-deoxycytidine (5-dAzaC) Inhibits DNMT Clinical trial-completed (NCT00744757)/ Myelodysplastic Syndrome

GSK2879552 Inhibits LSD1 Terminated clinical trials Relapsed/Refractory Small Cell Lung Carcinoma

Tazemetostat Inhibits EZH2 (PRC2 subunit) Clinical trial-completed (NCT02860286)/ Relapsed or Refractory Malig-
nant Mesothelioma
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